Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
25 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
99 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
457 tokens/sec
Kimi K2 via Groq Premium
252 tokens/sec
2000 character limit reached

Zero-Shot End-to-End Relation Extraction in Chinese: A Comparative Study of Gemini, LLaMA and ChatGPT (2502.05694v1)

Published 8 Feb 2025 in cs.CL, cs.AI, and cs.LG

Abstract: This study investigates the performance of various LLMs on zero-shot end-to-end relation extraction (RE) in Chinese, a task that integrates entity recognition and relation extraction without requiring annotated data. While LLMs show promise for RE, most prior work focuses on English or assumes pre-annotated entities, leaving their effectiveness in Chinese RE largely unexplored. To bridge this gap, we evaluate ChatGPT, Gemini, and LLaMA based on accuracy, efficiency, and adaptability. ChatGPT demonstrates the highest overall performance, balancing precision and recall, while Gemini achieves the fastest inference speed, making it suitable for real-time applications. LLaMA underperforms in both accuracy and latency, highlighting the need for further adaptation. Our findings provide insights into the strengths and limitations of LLMs for zero-shot Chinese RE, shedding light on trade-offs between accuracy and efficiency. This study serves as a foundation for future research aimed at improving LLM adaptability to complex linguistic tasks in Chinese NLP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.