Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistency of augmentation graph and network approximability in contrastive learning (2502.04312v1)

Published 6 Feb 2025 in cs.LG, math.AP, and math.SP

Abstract: Contrastive learning leverages data augmentation to develop feature representation without relying on large labeled datasets. However, despite its empirical success, the theoretical foundations of contrastive learning remain incomplete, with many essential guarantees left unaddressed, particularly the realizability assumption concerning neural approximability of an optimal spectral contrastive loss solution. In this work, we overcome these limitations by analyzing the pointwise and spectral consistency of the augmentation graph Laplacian. We establish that, under specific conditions for data generation and graph connectivity, as the augmented dataset size increases, the augmentation graph Laplacian converges to a weighted Laplace-Beltrami operator on the natural data manifold. These consistency results ensure that the graph Laplacian spectrum effectively captures the manifold geometry. Consequently, they give way to a robust framework for establishing neural approximability, directly resolving the realizability assumption in a current paradigm.

Summary

We haven't generated a summary for this paper yet.