Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cohomology of symmetric stacks (2502.04253v2)

Published 6 Feb 2025 in math.AG, math.GT, and math.RT

Abstract: We construct decompositions of: (1) the cohomology of smooth stacks, (2) the Borel--Moore homology of $0$-shifted symplectic stacks, and (3) the vanishing cycle cohomology of $(-1)$-shifted symplectic stacks, assuming a good moduli space exists and the tangent space has a pointwise orthogonal structure. These conditions are satisfied by many stacks of interest, including moduli stacks of semistable $G$-bundles and (twisted) $G$-Higgs bundles on curves, $G$-character stacks of oriented closed 2-manifolds and various 3-manifolds, and moduli stacks of semistable coherent sheaves on Calabi--Yau threefolds and K3 surfaces with generic polarization. As a special case, we prove a PBW-type theorem for cohomological Hall algebras of $3$-Calabi--Yau categories with commutative orientation data, a strong form of the cohomological integrality conjecture for such categories. We define the BPS cohomology as the primary summand of the decomposition. When the stack is smooth, the BPS cohomology coincides with the intersection cohomology of the good moduli space, generalizing a theorem of Meinhardt--Reineke. Using the BPS cohomology for singular spaces, we propose a formulation of the topological mirror symmetry conjecture for the stack of $G$-Higgs bundles generalizing the work of Hausel and Thaddeus for type A groups, and a version of Langlands duality for character stacks of compact oriented 3-manifolds, following Ben-Zvi--Gunningham--Jordan--Safronov.

Summary

We haven't generated a summary for this paper yet.