Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

TQ-DiT: Efficient Time-Aware Quantization for Diffusion Transformers (2502.04056v1)

Published 6 Feb 2025 in cs.LG and eess.SP

Abstract: Diffusion transformers (DiTs) combine transformer architectures with diffusion models. However, their computational complexity imposes significant limitations on real-time applications and sustainability of AI systems. In this study, we aim to enhance the computational efficiency through model quantization, which represents the weights and activation values with lower precision. Multi-region quantization (MRQ) is introduced to address the asymmetric distribution of network values in DiT blocks by allocating two scaling parameters to sub-regions. Additionally, time-grouping quantization (TGQ) is proposed to reduce quantization error caused by temporal variation in activations. The experimental results show that the proposed algorithm achieves performance comparable to the original full-precision model with only a 0.29 increase in FID at W8A8. Furthermore, it outperforms other baselines at W6A6, thereby confirming its suitability for low-bit quantization. These results highlight the potential of our method to enable efficient real-time generative models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.