Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Learning of Counter Categories and Ratings in PvP Games (2502.03998v1)

Published 6 Feb 2025 in cs.LG, cs.AI, cs.GT, and cs.MA

Abstract: In competitive games, strength ratings like Elo are widely used to quantify player skill and support matchmaking by accounting for skill disparities better than simple win rate statistics. However, scalar ratings cannot handle complex intransitive relationships, such as counter strategies seen in Rock-Paper-Scissors. To address this, recent work introduced Neural Rating Table and Neural Counter Table, which combine scalar ratings with discrete counter categories to model intransitivity. While effective, these methods rely on neural network training and cannot perform real-time updates. In this paper, we propose an online update algorithm that extends Elo principles to incorporate real-time learning of counter categories. Our method dynamically adjusts both ratings and counter relationships after each match, preserving the explainability of scalar ratings while addressing intransitivity. Experiments on zero-sum competitive games demonstrate its practicality, particularly in scenarios without complex team compositions.

Summary

We haven't generated a summary for this paper yet.