Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Underwater Soft Fin Flapping Motion with Deep Neural Network Based Surrogate Model (2502.03135v1)

Published 5 Feb 2025 in cs.RO and cs.LG

Abstract: This study presents a novel framework for precise force control of fin-actuated underwater robots by integrating a deep neural network (DNN)-based surrogate model with reinforcement learning (RL). To address the complex interactions with the underwater environment and the high experimental costs, a DNN surrogate model acts as a simulator for enabling efficient training for the RL agent. Additionally, grid-switching control is applied to select optimized models for specific force reference ranges, improving control accuracy and stability. Experimental results show that the RL agent, trained in the surrogate simulation, generates complex thrust motions and achieves precise control of a real soft fin actuator. This approach provides an efficient control solution for fin-actuated robots in challenging underwater environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.