A New Rejection Sampling Approach to $k$-$\mathtt{means}$++ With Improved Trade-Offs (2502.02085v1)
Abstract: The $k$-$\mathtt{means}$++ seeding algorithm (Arthur & Vassilvitskii, 2007) is widely used in practice for the $k$-means clustering problem where the goal is to cluster a dataset $\mathcal{X} \subset \mathbb{R} d$ into $k$ clusters. The popularity of this algorithm is due to its simplicity and provable guarantee of being $O(\log k)$ competitive with the optimal solution in expectation. However, its running time is $O(|\mathcal{X}|kd)$, making it expensive for large datasets. In this work, we present a simple and effective rejection sampling based approach for speeding up $k$-$\mathtt{means}$++. Our first method runs in time $\tilde{O}(\mathtt{nnz} (\mathcal{X}) + \beta k2d)$ while still being $O(\log k )$ competitive in expectation. Here, $\beta$ is a parameter which is the ratio of the variance of the dataset to the optimal $k$-$\mathtt{means}$ cost in expectation and $\tilde{O}$ hides logarithmic factors in $k$ and $|\mathcal{X}|$. Our second method presents a new trade-off between computational cost and solution quality. It incurs an additional scale-invariant factor of $ k{-\Omega( m/\beta)} \operatorname{Var} (\mathcal{X})$ in addition to the $O(\log k)$ guarantee of $k$-$\mathtt{means}$++ improving upon a result of (Bachem et al, 2016a) who get an additional factor of $m{-1}\operatorname{Var}(\mathcal{X})$ while still running in time $\tilde{O}(\mathtt{nnz}(\mathcal{X}) + mk2d)$. We perform extensive empirical evaluations to validate our theoretical results and to show the effectiveness of our approach on real datasets.
Collections
Sign up for free to add this paper to one or more collections.