Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Neurosymbolic AI for Travel Demand Prediction: Integrating Decision Tree Rules into Neural Networks (2502.01680v1)

Published 2 Feb 2025 in cs.LG and cs.AI

Abstract: Travel demand prediction is crucial for optimizing transportation planning, resource allocation, and infrastructure development, ensuring efficient mobility and economic sustainability. This study introduces a Neurosymbolic Artificial Intelligence (Neurosymbolic AI) framework that integrates decision tree (DT)-based symbolic rules with neural networks (NNs) to predict travel demand, leveraging the interpretability of symbolic reasoning and the predictive power of neural learning. The framework utilizes data from diverse sources, including geospatial, economic, and mobility datasets, to build a comprehensive feature set. DTs are employed to extract interpretable if-then rules that capture key patterns, which are then incorporated as additional features into a NN to enhance its predictive capabilities. Experimental results show that the combined dataset, enriched with symbolic rules, consistently outperforms standalone datasets across multiple evaluation metrics, including Mean Absolute Error (MAE), (R2), and Common Part of Commuters (CPC). Rules selected at finer variance thresholds (e.g., 0.0001) demonstrate superior effectiveness in capturing nuanced relationships, reducing prediction errors, and aligning with observed commuter patterns. By merging symbolic and neural learning paradigms, this Neurosymbolic approach achieves both interpretability and accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets