Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
130 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Doubly Robust Monte Carlo Tree Search (2502.01672v1)

Published 1 Feb 2025 in stat.ML, cs.AI, and cs.LG

Abstract: We present Doubly Robust Monte Carlo Tree Search (DR-MCTS), a novel algorithm that integrates Doubly Robust (DR) off-policy estimation into Monte Carlo Tree Search (MCTS) to enhance sample efficiency and decision quality in complex environments. Our approach introduces a hybrid estimator that combines MCTS rollouts with DR estimation, offering theoretical guarantees of unbiasedness and variance reduction under specified conditions. Empirical evaluations in Tic-Tac-Toe and the partially observable VirtualHome environment demonstrate DR-MCTS's superior performance over standard MCTS. In Tic-Tac-Toe, DR-MCTS achieves an 88% win rate compared to a 10% win rate for standard MCTS. In compound VirtualHome tasks, DR-MCTS attains a 20.7% success rate versus 10.3% for standard MCTS. Our scaling analysis reveals that DR-MCTS exhibits better sample efficiency, notably outperforming standard MCTS with larger LLMs while using a smaller model. These results underscore DR-MCTS's potential for efficient decision-making in complex, real-world scenarios where sample efficiency is paramount.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets