Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Context-Aware Hierarchical Merging for Long Document Summarization (2502.00977v1)

Published 3 Feb 2025 in cs.CL

Abstract: Hierarchical Merging is a technique commonly used to summarize very long texts ($>$100K tokens) by breaking down the input into smaller sections, summarizing those sections individually, and then merging or combining those summaries into a final coherent summary. Although it helps address the limitations of LLMs with fixed input length constraints, the recursive merging process can amplify LLM hallucinations, increasing the risk of factual inaccuracies. In this paper, we seek to mitigate hallucinations by enriching hierarchical merging with context from the source document. Specifically, we propose different approaches to contextual augmentation ranging from \emph{replacing} intermediate summaries with relevant input context, to \emph{refining} them while using the context as supporting evidence, and \emph{aligning} them implicitly (via citations) to the input. Experimental results on datasets representing legal and narrative domains show that contextual augmentation consistently outperforms zero-shot and hierarchical merging baselines for the Llama 3.1 model family. Our analysis further reveals that refinement methods tend to perform best when paired with extractive summarization for identifying relevant input.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)