Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 254 tok/s Pro
2000 character limit reached

OOD Detection with immature Models (2502.00820v1)

Published 2 Feb 2025 in cs.LG and cs.CV

Abstract: Likelihood-based deep generative models (DGMs) have gained significant attention for their ability to approximate the distributions of high-dimensional data. However, these models lack a performance guarantee in assigning higher likelihood values to in-distribution (ID) inputs, data the models are trained on, compared to out-of-distribution (OOD) inputs. This counter-intuitive behaviour is particularly pronounced when ID inputs are more complex than OOD data points. One potential approach to address this challenge involves leveraging the gradient of a data point with respect to the parameters of the DGMs. A recent OOD detection framework proposed estimating the joint density of layer-wise gradient norms for a given data point as a model-agnostic method, demonstrating superior performance compared to the Typicality Test across likelihood-based DGMs and image dataset pairs. In particular, most existing methods presuppose access to fully converged models, the training of which is both time-intensive and computationally demanding. In this work, we demonstrate that using immature models,stopped at early stages of training, can mostly achieve equivalent or even superior results on this downstream task compared to mature models capable of generating high-quality samples that closely resemble ID data. This novel finding enhances our understanding of how DGMs learn the distribution of ID data and highlights the potential of leveraging partially trained models for downstream tasks. Furthermore, we offer a possible explanation for this unexpected behaviour through the concept of support overlap.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube