Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations (2502.00550v1)

Published 1 Feb 2025 in cs.LG, cs.NA, math.NA, and physics.comp-ph

Abstract: Laplace Neural Operators (LNOs) have recently emerged as a promising approach in scientific machine learning due to the ability to learn nonlinear maps between functional spaces. However, this framework often requires substantial amounts of high-fidelity (HF) training data, which is often prohibitively expensive to acquire. To address this, we propose multi-fidelity Laplace Neural Operators (MF-LNOs), which combine a low-fidelity (LF) base model with parallel linear/nonlinear HF correctors and dynamic inter-fidelity weighting. This allows us to exploit correlations between LF and HF datasets and achieve accurate inference of quantities of interest even with sparse HF data. We further incorporate a modified replica exchange stochastic gradient Langevin algorithm, which enables a more effective posterior distribution estimation and uncertainty quantification in model predictions. Extensive validation across four canonical dynamical systems (the Lorenz system, Duffing oscillator, Burgers equation, and Brusselator reaction-diffusion system) demonstrates the framework's effectiveness. The results show significant improvements, with testing losses reduced by 40% to 80% compared to traditional approaches. This validates MF-LNO as a versatile tool for surrogate modeling in parametric PDEs, offering significant improvements in data efficiency and uncertainty-aware prediction.

Summary

We haven't generated a summary for this paper yet.