Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Analysis of Diffusion Models with Application to Schedule Design (2502.00180v2)

Published 31 Jan 2025 in cs.LG and stat.ML

Abstract: Diffusion models (DMs) have emerged as powerful tools for modeling complex data distributions and generating realistic new samples. Over the years, advanced architectures and sampling methods have been developed to make these models practically usable. However, certain synthesis process decisions still rely on heuristics without a solid theoretical foundation. In our work, we offer a novel analysis of the DM's inference process, introducing a comprehensive frequency response perspective. Specifically, by relying on Gaussianity assumption, we present the inference process as a closed-form spectral transfer function, capturing how the generated signal evolves in response to the initial noise. We demonstrate how the proposed analysis can be leveraged to design a noise schedule that aligns effectively with the characteristics of the data. The spectral perspective also provides insights into the underlying dynamics and sheds light on the relationship between spectral properties and noise schedule structure. Our results lead to scheduling curves that are dependent on the spectral content of the data, offering a theoretical justification for some of the heuristics taken by practitioners.

Summary

We haven't generated a summary for this paper yet.