Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthetic User Behavior Sequence Generation with Large Language Models for Smart Homes (2501.19298v1)

Published 31 Jan 2025 in cs.AI, cs.LG, and cs.NI

Abstract: In recent years, as smart home systems have become more widespread, security concerns within these environments have become a growing threat. Currently, most smart home security solutions, such as anomaly detection and behavior prediction models, are trained using fixed datasets that are precollected. However, the process of dataset collection is time-consuming and lacks the flexibility needed to adapt to the constantly evolving smart home environment. Additionally, the collection of personal data raises significant privacy concerns for users. Lately, LLMs have emerged as a powerful tool for a wide range of tasks across diverse application domains, thanks to their strong capabilities in natural language processing, reasoning, and problem-solving. In this paper, we propose an LLM-based synthetic dataset generation IoTGen framework to enhance the generalization of downstream smart home intelligent models. By generating new synthetic datasets that reflect changes in the environment, smart home intelligent models can be retrained to overcome the limitations of fixed and outdated data, allowing them to better align with the dynamic nature of real-world home environments. Specifically, we first propose a Structure Pattern Perception Compression (SPPC) method tailored for IoT behavior data, which preserves the most informative content in the data while significantly reducing token consumption. Then, we propose a systematic approach to create prompts and implement data generation to automatically generate IoT synthetic data with normative and reasonable properties, assisting task models in adaptive training to improve generalization and real-world performance.

Summary

We haven't generated a summary for this paper yet.