Statistical Physics of Deep Neural Networks: Generalization Capability, Beyond the Infinite Width, and Feature Learning (2501.19281v1)
Abstract: Deep Neural Networks (DNNs) excel at many tasks, often rivaling or surpassing human performance. Yet their internal processes remain elusive, frequently described as "black boxes." While performance can be refined experimentally, achieving a fundamental grasp of their inner workings is still a challenge. Statistical Mechanics has long tackled computational problems, and this thesis applies physics-based insights to understand DNNs via three complementary approaches. First, by averaging over data, we derive an asymptotic bound on generalization that depends solely on the size of the last layer, rather than on the total number of parameters -- revealing how deep architectures process information differently across layers. Second, adopting a data-dependent viewpoint, we explore a finite-width thermodynamic limit beyond the infinite-width regime. This leads to: (i) a closed-form expression for the generalization error in a finite-width one-hidden-layer network (regression task); (ii) an approximate partition function for deeper architectures; and (iii) a link between deep networks in this thermodynamic limit and Student's t-processes. Finally, from a task-explicit perspective, we present a preliminary analysis of how DNNs interact with a controlled dataset, investigating whether they truly internalize its structure -- collapsing to the teacher -- or merely memorize it. By understanding when a network must learn data structure rather than just memorize, it sheds light on fostering meaningful internal representations. In essence, this thesis leverages the synergy between Statistical Physics and Machine Learning to illuminate the inner behavior of DNNs.