Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Test-Time Training Scaling Laws for Chemical Exploration in Drug Design (2501.19153v2)

Published 31 Jan 2025 in cs.LG

Abstract: Chemical LLMs (CLMs) leveraging reinforcement learning (RL) have shown promise in de novo molecular design, yet often suffer from mode collapse, limiting their exploration capabilities. Inspired by Test-Time Training (TTT) in LLMs, we propose scaling TTT for CLMs to enhance chemical space exploration. We introduce MolExp, a novel benchmark emphasizing the discovery of structurally diverse molecules with similar bioactivity, simulating real-world drug design challenges. Our results demonstrate that scaling TTT by increasing the number of independent RL agents follows a log-linear scaling law, significantly improving exploration efficiency as measured by MolExp. In contrast, increasing TTT training time yields diminishing returns, even with exploration bonuses. We further evaluate cooperative RL strategies to enhance exploration efficiency. These findings provide a scalable framework for generative molecular design, offering insights into optimizing AI-driven drug discovery.

Summary

We haven't generated a summary for this paper yet.