Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Token-Hungry, Yet Precise: DeepSeek R1 Highlights the Need for Multi-Step Reasoning Over Speed in MATH (2501.18576v1)

Published 30 Jan 2025 in cs.LG

Abstract: This study investigates the performance of the DeepSeek R1 LLM on 30 challenging mathematical problems derived from the MATH dataset, problems that previously proved unsolvable by other models under time constraints. Unlike prior work, this research removes time limitations to explore whether DeepSeek R1's architecture, known for its reliance on token-based reasoning, can achieve accurate solutions through a multi-step process. The study compares DeepSeek R1 with four other models (gemini-1.5-flash-8b, gpt-4o-mini-2024-07-18, llama3.1:8b, and mistral-8b-latest) across 11 temperature settings. Results demonstrate that DeepSeek R1 achieves superior accuracy on these complex problems but generates significantly more tokens than other models, confirming its token-intensive approach. The findings highlight a trade-off between accuracy and efficiency in mathematical problem-solving with LLMs: while DeepSeek R1 excels in accuracy, its reliance on extensive token generation may not be optimal for applications requiring rapid responses. The study underscores the importance of considering task-specific requirements when selecting an LLM and emphasizes the role of temperature settings in optimizing performance.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com