Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Outcome Regression Methods for Analyzing Hybrid Control Studies: Balancing Bias and Variability (2501.17358v1)

Published 29 Jan 2025 in stat.ME

Abstract: There is growing interest in a hybrid control design in which a randomized controlled trial is augmented with an external control arm from a previous trial or real world data. Existing methods for analyzing hybrid control studies include various downweighting and propensity score methods as well as methods that combine downweighting with propensity score stratification. In this article, we describe and discuss methods that make use of an outcome regression model (possibly in addition to a propensity score model). Specifically, we consider an augmentation method, a G-computation method, and a weighted regression method, and note that the three methods provide different bias-variance trade-offs. The methods are compared with each other and with existing methods in a simulation study. Simulation results indicate that weighted regression compares favorably with other model-based methods that seek to improve efficiency by incorporating external control data. The methods are illustrated using two examples from urology and infectious disease.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.