Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Mitigating Omitted Variable Bias in Empirical Software Engineering (2501.17026v1)

Published 28 Jan 2025 in cs.SE

Abstract: Omitted variable bias occurs when a statistical model leaves out variables that are relevant determinants of the effects under study. This results in the model attributing the missing variables' effect to some of the included variables -- hence over- or under-estimating the latter's true effect. Omitted variable bias presents a significant threat to the validity of empirical research, particularly in non-experimental studies such as those prevalent in empirical software engineering. This paper illustrates the impact of omitted variable bias on two case studies in the software engineering domain, and uses them to present methods to investigate the possible presence of omitted variable bias, to estimate its impact, and to mitigate its drawbacks. The analysis techniques we present are based on causal structural models of the variables of interest, which provide a practical, intuitive summary of the key relations among variables. This paper demonstrates a sequence of analysis steps that inform the design and execution of any empirical study in software engineering. An important observation is that it pays off to invest effort investigating omitted variable bias before actually executing an empirical study, because this effort can lead to a more solid study design, and to a significant reduction in its threats to validity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.