Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Feasibility of Using LLMs to Autonomously Execute Multi-host Network Attacks (2501.16466v3)

Published 27 Jan 2025 in cs.CR and cs.AI

Abstract: LLMs have shown preliminary promise in some security tasks and CTF challenges. Real cyberattacks are often multi-host network attacks, which involve executing a number of steps across multiple hosts such as conducting reconnaissance, exploiting vulnerabilities, and using compromised hosts to exfiltrate data. To date, the extent to which LLMs can autonomously execute multi-host network attacks} is not well understood. To this end, our first contribution is MHBench, an open-source multi-host attack benchmark with 10 realistic emulated networks (from 25 to 50 hosts). We find that popular LLMs including modern reasoning models (e.g., GPT4o, Gemini 2.5 Pro, Sonnet 3.7 Thinking) with state-of-art security-relevant prompting strategies (e.g., PentestGPT, CyberSecEval3) cannot autonomously execute multi-host network attacks. To enable LLMs to autonomously execute such attacks, our second contribution is Incalmo, an high-level abstraction layer. Incalmo enables LLMs to specify high-level actions (e.g., infect a host, scan a network). Incalmo's translation layer converts these actions into lower-level primitives (e.g., commands to exploit tools) through expert agents. In 9 out of 10 networks in MHBench, LLMs using Incalmo achieve at least some of the attack goals. Even smaller LLMs (e.g., Haiku 3.5, Gemini 2 Flash) equipped with Incalmo achieve all goals in 5 of 10 environments. We also validate the key role of high-level actions in Incalmo's abstraction in enabling LLMs to autonomously execute such attacks.

Summary

We haven't generated a summary for this paper yet.