Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Probabilistic Trees and Causal Networks for Clinical and Epidemiological Data (2501.15973v1)

Published 27 Jan 2025 in cs.LG and q-bio.QM

Abstract: Healthcare decision-making requires not only accurate predictions but also insights into how factors influence patient outcomes. While traditional Machine Learning (ML) models excel at predicting outcomes, such as identifying high risk patients, they are limited in addressing what-if questions about interventions. This study introduces the Probabilistic Causal Fusion (PCF) framework, which integrates Causal Bayesian Networks (CBNs) and Probability Trees (PTrees) to extend beyond predictions. PCF leverages causal relationships from CBNs to structure PTrees, enabling both the quantification of factor impacts and simulation of hypothetical interventions. PCF was validated on three real-world healthcare datasets i.e. MIMIC-IV, Framingham Heart Study, and Diabetes, chosen for their clinically diverse variables. It demonstrated predictive performance comparable to traditional ML models while providing additional causal reasoning capabilities. To enhance interpretability, PCF incorporates sensitivity analysis and SHapley Additive exPlanations (SHAP). Sensitivity analysis quantifies the influence of causal parameters on outcomes such as Length of Stay (LOS), Coronary Heart Disease (CHD), and Diabetes, while SHAP highlights the importance of individual features in predictive modeling. By combining causal reasoning with predictive modeling, PCF bridges the gap between clinical intuition and data-driven insights. Its ability to uncover relationships between modifiable factors and simulate hypothetical scenarios provides clinicians with a clearer understanding of causal pathways. This approach supports more informed, evidence-based decision-making, offering a robust framework for addressing complex questions in diverse healthcare settings.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com