Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
64 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
227 tokens/sec
2000 character limit reached

Independence and mean sensitivity in minimal systems under group actions (2501.15622v2)

Published 26 Jan 2025 in math.DS

Abstract: In this paper, we mainly study the relation between regularity, independence and mean sensitivity for minimal systems. In the first part, we show that if a minimal system is incontractible, or local Bronstein with an invariant Borel probability measure, then the regularity is strictly bounded by the infinite independence. In particular, the following two types of minimal systems are applicable to our result: (1) The acting group of the minimal system is a virtually nilpotent group. (2) The minimal system is a proximal extension of its maximal equicontinuous factor and admits an invariant Borel probability measure. Items (1) and (2) correspond to Conjectures 1 and 2 from Huang, Lian, Shao, and Ye (J. Funct. Anal., 2021); item (1) verifies Conjecture 1 in the virtually nilpotent case, and item (2) gives an affirmative answer to Conjecture 2. In the second part, for a minimal system acting by an amenable group, under the local Bronstein condition, we establish parallel results regarding weak mean sensitivity and establish that every mean-sensitive tuple is an IT-tuple.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube