Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

BILLNET: A Binarized Conv3D-LSTM Network with Logic-gated residual architecture for hardware-efficient video inference (2501.14495v1)

Published 24 Jan 2025 in cs.CV and cs.AR

Abstract: Long Short-Term Memory (LSTM) and 3D convolution (Conv3D) show impressive results for many video-based applications but require large memory and intensive computing. Motivated by recent works on hardware-algorithmic co-design towards efficient inference, we propose a compact binarized Conv3D-LSTM model architecture called BILLNET, compatible with a highly resource-constrained hardware. Firstly, BILLNET proposes to factorize the costly standard Conv3D by two pointwise convolutions with a grouped convolution in-between. Secondly, BILLNET enables binarized weights and activations via a MUX-OR-gated residual architecture. Finally, to efficiently train BILLNET, we propose a multi-stage training strategy enabling to fully quantize LSTM layers. Results on Jester dataset show that our method can obtain high accuracy with extremely low memory and computational budgets compared to existing Conv3D resource-efficient models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube