Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

2-Tier SimCSE: Elevating BERT for Robust Sentence Embeddings (2501.13758v1)

Published 23 Jan 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Effective sentence embeddings that capture semantic nuances and generalize well across diverse contexts are crucial for natural language processing tasks. We address this challenge by applying SimCSE (Simple Contrastive Learning of Sentence Embeddings) using contrastive learning to fine-tune the minBERT model for sentiment analysis, semantic textual similarity (STS), and paraphrase detection. Our contributions include experimenting with three different dropout techniques, namely standard dropout, curriculum dropout, and adaptive dropout, to tackle overfitting, proposing a novel 2-Tier SimCSE Fine-tuning Model that combines both unsupervised and supervised SimCSE on STS task, and exploring transfer learning potential for Paraphrase and SST tasks. Our findings demonstrate the effectiveness of SimCSE, with the 2-Tier model achieving superior performance on the STS task, with an average test score of 0.742 across all three downstream tasks. The results of error analysis reveals challenges in handling complex sentiments and reliance on lexical overlap for paraphrase detection, highlighting areas for future research. The ablation study revealed that removing Adaptive Dropout in the Single-Task Unsupervised SimCSE Model led to improved performance on the STS task, indicating overfitting due to added parameters. Transfer learning from SimCSE models on Paraphrase and SST tasks did not enhance performance, suggesting limited transferability of knowledge from the STS task.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yumeng Wang (21 papers)
  2. Ziran Zhou (2 papers)
  3. Junjin Wang (1 paper)