Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Pseudocode-Injection Magic: Enabling LLMs to Tackle Graph Computational Tasks (2501.13731v1)

Published 23 Jan 2025 in cs.CL and cs.AI

Abstract: Graph computational tasks are inherently challenging and often demand the development of advanced algorithms for effective solutions. With the emergence of LLMs, researchers have begun investigating their potential to address these tasks. However, existing approaches are constrained by LLMs' limited capability to comprehend complex graph structures and their high inference costs, rendering them impractical for handling large-scale graphs. Inspired by human approaches to graph problems, we introduce a novel framework, PIE (Pseudocode-Injection-Enhanced LLM Reasoning for Graph Computational Tasks), which consists of three key steps: problem understanding, prompt design, and code generation. In this framework, LLMs are tasked with understanding the problem and extracting relevant information to generate correct code. The responsibility for analyzing the graph structure and executing the code is delegated to the interpreter. We inject task-related pseudocodes into the prompts to further assist the LLMs in generating efficient code. We also employ cost-effective trial-and-error techniques to ensure that the LLM-generated code executes correctly. Unlike other methods that require invoking LLMs for each individual test case, PIE only calls the LLM during the code generation phase, allowing the generated code to be reused and significantly reducing inference costs. Extensive experiments demonstrate that PIE outperforms existing baselines in terms of both accuracy and computational efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.