Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs (2501.13620v5)

Published 23 Jan 2025 in cs.CV and cs.AI

Abstract: A fundamental challenge in artificial intelligence involves understanding the cognitive mechanisms underlying visual reasoning in sophisticated models like Vision-LLMs (VLMs). How do these models integrate visual perception with abstract thought, especially when reasoning across multiple images or requiring fine-grained compositional understanding? Drawing inspiration from cognitive science, this paper introduces a structured evaluation framework using diverse visual reasoning tasks-Bongard Problems (BPs) and Winoground-to dissect the perception-reasoning interface in VLMs. We propose three distinct evaluation paradigms, mirroring human problem-solving strategies: Direct Visual Rule Learning (DVRL; holistic processing), Deductive Rule Learning (DRL; rule extraction and application), and Componential Analysis (CA; analytical decomposition via task-agnostic textual descriptions). These paradigms systematically vary cognitive load and probe processing stages. Notably, CA enables multi-image reasoning evaluation even for single-image architectures and isolates reasoning from perception by operating on textual descriptions. Applying this framework, we demonstrate that CA, leveraging powerful LLMs for reasoning over rich, independently generated descriptions, achieves new state-of-the-art (SOTA) performance on challenging benchmarks including Bongard-OpenWorld, Bongard-HOI, and Winoground. Ablation studies confirm reasoning improves significantly when perceptual challenges are mitigated, revealing a critical perception bottleneck. Our framework provides a valuable diagnostic tool and suggests that decoupling perception (via rich, task-agnostic description) from reasoning is a promising direction for robust and general visual intelligence.

Summary

We haven't generated a summary for this paper yet.