Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GoDe: Gaussians on Demand for Progressive Level of Detail and Scalable Compression (2501.13558v2)

Published 23 Jan 2025 in cs.CV

Abstract: 3D Gaussian Splatting enhances real-time performance in novel view synthesis by representing scenes with mixtures of Gaussians and utilizing differentiable rasterization. However, it typically requires large storage capacity and high VRAM, demanding the design of effective pruning and compression techniques. Existing methods, while effective in some scenarios, struggle with scalability and fail to adapt models based on critical factors such as computing capabilities or bandwidth, requiring to re-train the model under different configurations. In this work, we propose a novel, model-agnostic technique that organizes Gaussians into several hierarchical layers, enabling progressive Level of Detail (LoD) strategy. This method, combined with recent approach of compression of 3DGS, allows a single model to instantly scale across several compression ratios, with minimal to none impact to quality compared to a single non-scalable model and without requiring re-training. We validate our approach on typical datasets and benchmarks, showcasing low distortion and substantial gains in terms of scalability and adaptability.

Summary

We haven't generated a summary for this paper yet.