Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Multi-Attribute Fairness in Healthcare Predictive Modeling (2501.13219v1)

Published 22 Jan 2025 in cs.LG and cs.CY

Abstract: AI systems in healthcare have demonstrated remarkable potential to improve patient outcomes. However, if not designed with fairness in mind, they also carry the risks of perpetuating or exacerbating existing health disparities. Although numerous fairness-enhancing techniques have been proposed, most focus on a single sensitive attribute and neglect the broader impact that optimizing fairness for one attribute may have on the fairness of other sensitive attributes. In this work, we introduce a novel approach to multi-attribute fairness optimization in healthcare AI, tackling fairness concerns across multiple demographic attributes concurrently. Our method follows a two-phase approach: initially optimizing for predictive performance, followed by fine-tuning to achieve fairness across multiple sensitive attributes. We develop our proposed method using two strategies, sequential and simultaneous. Our results show a significant reduction in Equalized Odds Disparity (EOD) for multiple attributes, while maintaining high predictive accuracy. Notably, we demonstrate that single-attribute fairness methods can inadvertently increase disparities in non-targeted attributes whereas simultaneous multi-attribute optimization achieves more balanced fairness improvements across all attributes. These findings highlight the importance of comprehensive fairness strategies in healthcare AI and offer promising directions for future research in this critical area.

Summary

We haven't generated a summary for this paper yet.