Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Generating Plausible Distractors for Multiple-Choice Questions via Student Choice Prediction (2501.13125v3)

Published 21 Jan 2025 in cs.CL, cs.AI, and cs.LG

Abstract: In designing multiple-choice questions (MCQs) in education, creating plausible distractors is crucial for identifying students' misconceptions and gaps in knowledge and accurately assessing their understanding. However, prior studies on distractor generation have not paid sufficient attention to enhancing the difficulty of distractors, resulting in reduced effectiveness of MCQs. This study presents a pipeline for training a model to generate distractors that are more likely to be selected by students. First, we train a pairwise ranker to reason about students' misconceptions and assess the relative plausibility of two distractors. Using this model, we create a dataset of pairwise distractor ranks and then train a distractor generator via Direct Preference Optimization (DPO) to generate more plausible distractors. Experiments on computer science subjects (Python, DB, MLDL) demonstrate that our pairwise ranker effectively identifies students' potential misunderstandings and achieves ranking accuracy comparable to human experts. Furthermore, our distractor generator outperforms several baselines in generating plausible distractors and produces questions with a higher item discrimination index (DI).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets