Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HEPPO: Hardware-Efficient Proximal Policy Optimization -- A Universal Pipelined Architecture for Generalized Advantage Estimation (2501.12703v1)

Published 22 Jan 2025 in cs.AR, cs.AI, and cs.LG

Abstract: This paper introduces HEPPO, an FPGA-based accelerator designed to optimize the Generalized Advantage Estimation (GAE) stage in Proximal Policy Optimization (PPO). Unlike previous approaches that focused on trajectory collection and actor-critic updates, HEPPO addresses GAE's computational demands with a parallel, pipelined architecture implemented on a single System-on-Chip (SoC). This design allows for the adaptation of various hardware accelerators tailored for different PPO phases. A key innovation is our strategic standardization technique, which combines dynamic reward standardization and block standardization for values, followed by 8-bit uniform quantization. This method stabilizes learning, enhances performance, and manages memory bottlenecks, achieving a 4x reduction in memory usage and a 1.5x increase in cumulative rewards. We propose a solution on a single SoC device with programmable logic and embedded processors, delivering throughput orders of magnitude higher than traditional CPU-GPU systems. Our single-chip solution minimizes communication latency and throughput bottlenecks, significantly boosting PPO training efficiency. Experimental results show a 30% increase in PPO speed and a substantial reduction in memory access time, underscoring HEPPO's potential for broad applicability in hardware-efficient reinforcement learning algorithms.

Summary

We haven't generated a summary for this paper yet.