Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 95 TPS
Gemini 2.5 Pro 47 TPS Pro
GPT-5 Medium 29 TPS
GPT-5 High 33 TPS Pro
GPT-4o 102 TPS
GPT OSS 120B 471 TPS Pro
Kimi K2 192 TPS Pro
2000 character limit reached

Heterogeneous Federated Learning Systems for Time-Series Power Consumption Prediction with Multi-Head Embedding Mechanism (2501.12136v1)

Published 21 Jan 2025 in cs.LG

Abstract: Time-series prediction is increasingly popular in a variety of applications, such as smart factories and smart transportation. Researchers have used various techniques to predict power consumption, but existing models lack discussion of collaborative learning and privacy issues among multiple clients. To address these issues, we propose Multi-Head Heterogeneous Federated Learning (MHHFL) systems that consist of multiple head networks, which independently act as carriers for federated learning. In the federated period, each head network is embedded into 2-dimensional vectors and shared with the centralized source pool. MHHFL then selects appropriate source networks and blends the head networks as knowledge transfer in federated learning. The experimental results show that the proposed MHHFL systems significantly outperform the benchmark and state-of-the-art systems and reduce the prediction error by 24.9% to 94.1%. The ablation studies demonstrate the effectiveness of the proposed mechanisms in the MHHFL (head network embedding and selection mechanisms), which significantly outperforms traditional federated average and random transfer.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube