Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Portfolio Performance through Clustering and Sharpe Ratio-Based Optimization: A Comparative Backtesting Approach (2501.12074v2)

Published 21 Jan 2025 in cs.LG and q-fin.PM

Abstract: Optimizing portfolio performance is a fundamental challenge in financial modeling, requiring the integration of advanced clustering techniques and data-driven optimization strategies. This paper introduces a comparative backtesting approach that combines clustering-based portfolio segmentation and Sharpe ratio-based optimization to enhance investment decision-making. First, we segment a diverse set of financial assets into clusters based on their historical log-returns using K-Means clustering. This segmentation enables the grouping of assets with similar return characteristics, facilitating targeted portfolio construction. Next, for each cluster, we apply a Sharpe ratio-based optimization model to derive optimal weights that maximize risk-adjusted returns. Unlike traditional mean-variance optimization, this approach directly incorporates the trade-off between returns and volatility, resulting in a more balanced allocation of resources within each cluster. The proposed framework is evaluated through a backtesting study using historical data spanning multiple asset classes. Optimized portfolios for each cluster are constructed and their cumulative returns are compared over time against a traditional equal-weighted benchmark portfolio.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com