Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inequalities and asymptotics for hook lengths in $\ell$-regular partitions and $\ell$-distinct partitions (2501.10916v2)

Published 19 Jan 2025 in math.CO and math.NT

Abstract: In this article, we study hook lengths in $\ell$-regular partitions and $\ell$-distinct partitions. More precisely, we establish hook length inequalities between $\ell$-regular partitions and $\ell$-distinct partitions for hook lengths $2$ and $3$, by deriving asymptotic formulas for the total number of hooks of length $t$ in both partition classes, for $t = 1, 2, 3$. From these asymptotics, we show that the ratio of the total number of hooks of length $t$ in $\ell$-regular partitions to those in $\ell$-distinct partitions tends to a constant that depends on $\ell$ and $t$. We also provide hook length inequalities within $\ell$-regular partitions and within $\ell$-distinct partitions.

Summary

We haven't generated a summary for this paper yet.