Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prior distributions for structured semi-orthogonal matrices (2501.10263v1)

Published 17 Jan 2025 in stat.ME, math.ST, and stat.TH

Abstract: Statistical models for multivariate data often include a semi-orthogonal matrix parameter. In many applications, there is reason to expect that the semi-orthogonal matrix parameter satisfies a structural assumption such as sparsity or smoothness. From a Bayesian perspective, these structural assumptions should be incorporated into an analysis through the prior distribution. In this work, we introduce a general approach to constructing prior distributions for structured semi-orthogonal matrices that leads to tractable posterior inference via parameter-expanded Markov chain Monte Carlo. We draw upon recent results from random matrix theory to establish a theoretical basis for the proposed approach. We then introduce specific prior distributions for incorporating sparsity or smoothness and illustrate their use through applications to biological and oceanographic data.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com