Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reward Compatibility: A Framework for Inverse RL (2501.07996v1)

Published 14 Jan 2025 in cs.LG

Abstract: We provide an original theoretical study of Inverse Reinforcement Learning (IRL) through the lens of reward compatibility, a novel framework to quantify the compatibility of a reward with the given expert's demonstrations. Intuitively, a reward is more compatible with the demonstrations the closer the performance of the expert's policy computed with that reward is to the optimal performance for that reward. This generalizes the notion of feasible reward set, the most common framework in the theoretical IRL literature, for which a reward is either compatible or not compatible. The grayscale introduced by the reward compatibility is the key to extend the realm of provably efficient IRL far beyond what is attainable with the feasible reward set: from tabular to large-scale MDPs. We analyze the IRL problem across various settings, including optimal and suboptimal expert's demonstrations and both online and offline data collection. For all of these dimensions, we provide a tractable algorithm and corresponding sample complexity analysis, as well as various insights on reward compatibility and how the framework can pave the way to yet more general problem settings.

Summary

We haven't generated a summary for this paper yet.