Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

The Wigner Little Group for Photons Is a Projective Subalgebra (2501.07909v1)

Published 14 Jan 2025 in math-ph and math.MP

Abstract: This paper presents the Geometric Algebra approach to the Wigner little group for photons using the Spacetime Algebra, incorporating a mirror-based view for physical interpretation. The shift from a point-based view to a mirror-based view is a modern movement that allows for a more intuitive representation of geometric and physical entities, with vectors and their higher-grade counterparts viewed as hyperplanes. This reinterpretation simplifies the implementation of homogeneous representations of geometric objects within the Spacetime Algebra and enables a relative view via projective geometry. Then, after utilizing the intrinsic properties of Geometric Algebra, the Wigner little group is seen to induce a projective geometric algebra as a subalgebra of the Spacetime Algebra. However, the dimension-agnostic nature of Geometric Algebra enables the generalization of induced subalgebras to (1+n)-dimensional Minkowski geometric algebras, termed little photon algebras. The lightlike transformations (translations) in these little photon algebras are seen to leave invariant the (pseudo)canonical electromagetic field bivector. Geometrically, this corresponds to Lorentz transformations that do not change the intersection of the spacelike polarization hyperplane with the lightlike wavevector hyperplane while simultaneously not affecting the lightlike wavevector hyperplane. This provides for a framework that unifies the analysis of symmetries and substructures of point-based Geometric Algebra with mirror-based Geometric Algebra.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com