Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Materialist: Physically Based Editing Using Single-Image Inverse Rendering (2501.03717v2)

Published 7 Jan 2025 in cs.CV, cs.AI, and cs.GR

Abstract: Achieving physically consistent image editing remains a significant challenge in computer vision. Existing image editing methods typically rely on neural networks, which struggle to accurately handle shadows and refractions. Conversely, physics-based inverse rendering often requires multi-view optimization, limiting its practicality in single-image scenarios. In this paper, we propose Materialist, a method combining a learning-based approach with physically based progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. Our approach enables a range of applications, including material editing, object insertion, and relighting, while also introducing an effective method for editing material transparency without requiring full scene geometry. Furthermore, Our envmap estimation method also achieves state-of-the-art performance, further enhancing the accuracy of image editing task. Experiments demonstrate strong performance across synthetic and real-world datasets, excelling even on challenging out-of-domain images. Project website: https://lez-s.github.io/materialist_project/

Summary

We haven't generated a summary for this paper yet.