Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Simultaneous analysis of approximate leave-one-out cross-validation and mean-field inference (2501.02624v1)

Published 5 Jan 2025 in math.ST, stat.ML, and stat.TH

Abstract: Approximate Leave-One-Out Cross-Validation (ALO-CV) is a method that has been proposed to estimate the generalization error of a regularized estimator in the high-dimensional regime where dimension and sample size are of the same order, the so called ``proportional regime''. A new analysis is developed to derive the consistency of ALO-CV for non-differentiable regularizer under Gaussian covariates and strong-convexity of the regularizer. Using a conditioning argument, the difference between the ALO-CV weights and their counterparts in mean-field inference is shown to be small. Combined with upper bounds between the mean-field inference estimate and the leave-one-out quantity, this provides a proof that ALO-CV approximates the leave-one-out quantity as well up to negligible error terms. Linear models with square loss, robust linear regression and single-index models are explicitly treated.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube