Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
88 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
26 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
73 tokens/sec
GPT OSS 120B via Groq Premium
485 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Event Masked Autoencoder: Point-wise Action Recognition with Event-Based Cameras (2501.01040v1)

Published 2 Jan 2025 in cs.CV

Abstract: Dynamic vision sensors (DVS) are bio-inspired devices that capture visual information in the form of asynchronous events, which encode changes in pixel intensity with high temporal resolution and low latency. These events provide rich motion cues that can be exploited for various computer vision tasks, such as action recognition. However, most existing DVS-based action recognition methods lose temporal information during data transformation or suffer from noise and outliers caused by sensor imperfections or environmental factors. To address these challenges, we propose a novel framework that preserves and exploits the spatiotemporal structure of event data for action recognition. Our framework consists of two main components: 1) a point-wise event masked autoencoder (MAE) that learns a compact and discriminative representation of event patches by reconstructing them from masked raw event camera points data; 2) an improved event points patch generation algorithm that leverages an event data inlier model and point-wise data augmentation techniques to enhance the quality and diversity of event points patches. To the best of our knowledge, our approach introduces the pre-train method into event camera raw points data for the first time, and we propose a novel event points patch embedding to utilize transformer-based models on event cameras.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.