Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

A review of faithfulness metrics for hallucination assessment in Large Language Models (2501.00269v1)

Published 31 Dec 2024 in cs.CL

Abstract: This review examines the means with which faithfulness has been evaluated across open-ended summarization, question-answering and machine translation tasks. We find that the use of LLMs as a faithfulness evaluator is commonly the metric that is most highly correlated with human judgement. The means with which other studies have mitigated hallucinations is discussed, with both retrieval augmented generation (RAG) and prompting framework approaches having been linked with superior faithfulness, whilst other recommendations for mitigation are provided. Research into faithfulness is integral to the continued widespread use of LLMs, as unfaithful responses can pose major risks to many areas whereby LLMs would otherwise be suitable. Furthermore, evaluating open-ended generation provides a more comprehensive measure of LLM performance than commonly used multiple-choice benchmarking, which can help in advancing the trust that can be placed within LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube