Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Convex Optimization Layers in Neural Architectures: Foundations and Perspectives (2412.20679v1)

Published 30 Dec 2024 in cs.LG and math.OC

Abstract: The integration of optimization problems within neural network architectures represents a fundamental shift from traditional approaches to handling constraints in deep learning. While it is long known that neural networks can incorporate soft constraints with techniques such as regularization, strict adherence to hard constraints is generally more difficult. A recent advance in this field, however, has addressed this problem by enabling the direct embedding of optimization layers as differentiable components within deep networks. This paper surveys the evolution and current state of this approach, from early implementations limited to quadratic programming, to more recent frameworks supporting general convex optimization problems. We provide a comprehensive review of the background, theoretical foundations, and emerging applications of this technology. Our analysis includes detailed mathematical proofs and an examination of various use cases that demonstrate the potential of this hybrid approach. This work synthesizes developments at the intersection of optimization theory and deep learning, offering insights into both current capabilities and future research directions in this rapidly evolving field.

Summary

We haven't generated a summary for this paper yet.