Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A $p$-adaptive treecode solution of the Poisson equation in the general domain (2412.20434v1)

Published 29 Dec 2024 in math.NA and cs.NA

Abstract: Raising the order of the multipole expansion is a feasible approach for improving the accuracy of the treecode algorithm. However, a uniform order for the expansion would result in the inefficiency of the implementation, especially when the kernel function is singular. In this paper, a $p$-adaptive treecode algorithm is designed to resolve the efficiency issue for problems defined on a general domain. Such a $p$-adaptive implementation is realized through i). conducting a systematical error analysis for the treecode algorithm, ii). designing a strategy for a non-uniform distribution of the order of multipole expansion towards a given error tolerance, and iii). employing a hierarchy geometry tree structure for coding the algorithm. The proposed $p$-adaptive treecode algorithm is validated by a number of numerical experiments, from which the desired performance is observed successfully, i.e., the computational complexity is reduced dramatically compared with the uniform order case, making our algorithm a competitive one for bottleneck problems such as the demagnetizing field calculation in computational micromagnetics.

Summary

We haven't generated a summary for this paper yet.