Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Initial Placement for Fruchterman--Reingold Force Model With Coordinate Newton Direction (2412.20317v3)

Published 29 Dec 2024 in cs.CG

Abstract: Graph drawing is a fundamental task in information visualization, with the Fruchterman--Reingold (FR) force model being one of the most popular choices. We can interpret this visualization task as a continuous optimization problem, which can be solved using the FR algorithm, the original algorithm for this force model, or the L-BFGS algorithm, a quasi-Newton method. However, both algorithms suffer from twist problems and are computationally expensive per iteration, which makes achieving high-quality visualizations for large-scale graphs challenging. In this research, we propose a new initial placement based on the stochastic coordinate descent to accelerate the optimization process. We first reformulate the problem as a discrete optimization problem using a hexagonal lattice and then iteratively update a randomly selected vertex along the coordinate Newton direction. We can use the FR or L-BFGS algorithms to obtain the final placement. We demonstrate the effectiveness of our proposed approach through experiments, highlighting the potential of coordinate descent methods for graph drawing tasks. Additionally, we suggest combining our method with other graph drawing techniques for further improvement. We also discuss the relationship between our proposed method and broader graph-related applications.

Summary

We haven't generated a summary for this paper yet.