Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Minimax-Optimal Multi-Agent Robust Reinforcement Learning (2412.19873v1)

Published 27 Dec 2024 in cs.LG

Abstract: Multi-agent robust reinforcement learning, also known as multi-player robust Markov games (RMGs), is a crucial framework for modeling competitive interactions under environmental uncertainties, with wide applications in multi-agent systems. However, existing results on sample complexity in RMGs suffer from at least one of three obstacles: restrictive range of uncertainty level or accuracy, the curse of multiple agents, and the barrier of long horizons, all of which cause existing results to significantly exceed the information-theoretic lower bound. To close this gap, we extend the Q-FTRL algorithm \citep{li2022minimax} to the RMGs in finite-horizon setting, assuming access to a generative model. We prove that the proposed algorithm achieves an $\varepsilon$-robust coarse correlated equilibrium (CCE) with a sample complexity (up to log factors) of $\widetilde{O}\left(H3S\sum_{i=1}mA_i\min\left{H,1/R\right}/\varepsilon2\right)$, where $S$ denotes the number of states, $A_i$ is the number of actions of the $i$-th agent, $H$ is the finite horizon length, and $R$ is uncertainty level. We also show that this sample compelxity is minimax optimal by combining an information-theoretic lower bound. Additionally, in the special case of two-player zero-sum RMGs, the algorithm achieves an $\varepsilon$-robust Nash equilibrium (NE) with the same sample complexity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube