Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 479 tok/s Pro
Kimi K2 242 tok/s Pro
2000 character limit reached

From Interests to Insights: An LLM Approach to Course Recommendations Using Natural Language Queries (2412.19312v2)

Published 26 Dec 2024 in cs.IR and cs.AI

Abstract: Most universities in the United States encourage their students to explore academic areas before declaring a major and to acquire academic breadth by satisfying a variety of requirements. Each term, students must choose among many thousands of offerings, spanning dozens of subject areas, a handful of courses to take. The curricular environment is also dynamic, and poor communication and search functions on campus can limit a student's ability to discover new courses of interest. To support both students and their advisers in such a setting, we explore a novel LLM course recommendation system that applies a Retrieval Augmented Generation (RAG) method to the corpus of course descriptions. The system first generates an 'ideal' course description based on the user's query. This description is converted into a search vector using embeddings, which is then used to find actual courses with similar content by comparing embedding similarities. We describe the method and assess the quality and fairness of some example prompts. Steps to deploy a pilot system on campus are discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube