Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Suppression of blow-up for the 3D Patlak-Keller-Segel-Navier-Stokes system via the Couette flow (2412.19197v2)

Published 26 Dec 2024 in math.AP

Abstract: As is well known, for the 3D Patlak-Keller-Segel system, regardless of whether they are parabolic-elliptic or parabolic-parabolic forms, finite-time blow-up may occur for arbitrarily small values of the initial mass. In this paper, it is proved for the first time that one can prevent the finite-time blow-up when the initial mass is less than a certain critical threshold via the stabilizing effect of the moving Navier-Stokes flows. In details, we investigate the nonlinear stability of the Couette flow $(Ay, 0, 0)$ in the Patlak-Keller-Segel-Navier-Stokes system and show that if the Couette flow is sufficiently strong (A is large enough), then the solutions for Patlak-Keller-Segel-Navier-Stokes system are global in time provided that the initial velocity is sufficiently small and the initial cell mass is less than $\frac{24}{5} \pi2$.

Summary

We haven't generated a summary for this paper yet.