Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Generalizing symplectic topology from 1 to 2 dimensions (2412.16223v1)

Published 18 Dec 2024 in math.SG, math-ph, and math.MP

Abstract: In symplectic topology one uses elliptic methods to prove rigidity results about symplectic manifolds and solutions of Hamiltonian equations on them, where the most basic example is given by geodesics on Riemannian manifolds. Harmonic maps from surfaces are the natural 2-dimensional generalizations of geodesics. In this paper, we give the corresponding generalization of symplectic manifolds and Hamiltonian equations, leading to a class of partial differential equations that share properties similar to Hamiltonian (ordinary) differential equations. Two rigidity results are discussed: a non-squeezing theorem and a version of the cuplength result for quadratic Hamiltonians on cotangent bundles. The proof of the latter uses a generalization of Floer curves, for which the necessary Fredholm and compactness results will be proven.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.