Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit Theorems for the Volume of Random Projections and Sections of $\ell_p^N$-balls (2412.16054v1)

Published 20 Dec 2024 in math.PR and math.MG

Abstract: Let $\mathbb{B}_pN$ be the $N$-dimensional unit ball corresponding to the $\ell_p$-norm. For each $N\in\mathbb N$ we sample a uniform random subspace $E_N$ of fixed dimension $m\in\mathbb{N}$ and consider the volume of $\mathbb{B}_pN$ projected onto $E_N$ or intersected with $E_N$. We also consider geometric quantities other than the volume such as the intrinsic volumes or the dual volumes. In this setting we prove central limit theorems, moderate deviation principles, and large deviation principles as $N\to\infty$. Our results provide a complete asymptotic picture. In particular, they generalize and complement a result of Paouris, Pivovarov, and Zinn [A central limit theorem for projections of the cube, Probab. Theory Related Fields. 159 (2014), 701-719] and another result of Adamczak, Pivovarov, and Simanjuntak [Limit theorems for the volumes of small codimensional random sections of $\ell_pn$-balls, Ann. Probab. 52 (2024), 93-126].

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com