Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some Unified Theory for Variance Reduced Prox-Linear Methods (2412.15008v1)

Published 19 Dec 2024 in math.OC

Abstract: This work considers the nonconvex, nonsmooth problem of minimizing a composite objective of the form $f(g(x))+h(x)$ where the inner mapping $g$ is a smooth finite summation or expectation amenable to variance reduction. In such settings, prox-linear methods can enjoy variance-reduced speed-ups despite the existence of nonsmoothness. We provide a unified convergence theory applicable to a wide range of common variance-reduced vector and Jacobian constructions. Our theory (i) only requires operator norm bounds on Jacobians (whereas prior works used potentially much larger Frobenius norms), (ii) provides state-of-the-art high probability guarantees, and (iii) allows inexactness in proximal computations.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com