Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

Modality-Independent Graph Neural Networks with Global Transformers for Multimodal Recommendation (2412.13994v1)

Published 18 Dec 2024 in cs.SI and cs.LG

Abstract: Multimodal recommendation systems can learn users' preferences from existing user-item interactions as well as the semantics of multimodal data associated with items. Many existing methods model this through a multimodal user-item graph, approaching multimodal recommendation as a graph learning task. Graph Neural Networks (GNNs) have shown promising performance in this domain. Prior research has capitalized on GNNs' capability to capture neighborhood information within certain receptive fields (typically denoted by the number of hops, $K$) to enrich user and item semantics. We observe that the optimal receptive fields for GNNs can vary across different modalities. In this paper, we propose GNNs with Modality-Independent Receptive Fields, which employ separate GNNs with independent receptive fields for different modalities to enhance performance. Our results indicate that the optimal $K$ for certain modalities on specific datasets can be as low as 1 or 2, which may restrict the GNNs' capacity to capture global information. To address this, we introduce a Sampling-based Global Transformer, which utilizes uniform global sampling to effectively integrate global information for GNNs. We conduct comprehensive experiments that demonstrate the superiority of our approach over existing methods. Our code is publicly available at https://github.com/CrawlScript/MIG-GT.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub